Minimal Model Prgram Learniry Seminar. Week 9:

- Terminal 3-fold MMP
- Terminalizations.
- Small Q-factorializations.
- Torrc singularibies.

Terminal 3-fold MMP:
X terminal projective 3 -fold.

$X \mathbb{Q}$-factornz1
is a flipping contraction. $P(x / w)=1$

- Ka ample over W
X has terminal sing.
X is smooth in cod 2.
What we want: construct π an som in $\operatorname{cod} 1$.

$$
\begin{aligned}
& P\left(X^{+} / W\right)=1 \\
& K_{x^{+}} \text {is ample over } W \\
& X^{+} \text {has terminal say. } \\
& X^{+} \mathbb{Q} \text { - Factorial. }
\end{aligned}
$$

$$
\begin{aligned}
& X-\frac{r}{X} \rightarrow X^{+} \\
& \forall_{W} / f^{+}
\end{aligned}
$$

X^{+}is unique and coincides with

$$
\begin{aligned}
& \operatorname{Projw}_{n \geq 0} \bigoplus_{n}\left(O_{x} \ln k x\right) \\
& R(x)=\bigoplus_{n \geq 0} f_{*}\left(O_{x} \ln k_{x}\right)
\end{aligned}
$$

provided that this ring is a fig Θ_{w}-algebra
Proposition: $R(x)$ is fy as an θ_{w}-algebra iff it is fig locally over W. (even locally analybicilly on W).

terminal 3-fold.
X Q-factorial

W is not Q-factorizl.

Mori 1999: proved that these curves can be contracted one by one in the analytic cal.

Terminal 3-fold flipping contr \rightarrow extrema neighborhood.

$\bigcirc \omega \in W$
X terminal 3-fold $w \in W$ closed point.

$$
\begin{aligned}
& f^{-1}(w)=\mathbb{P}^{\prime} \\
& K x \text { ample over } W
\end{aligned}
$$

(W, W) is a rabioml sty

$$
\rho(x / w)=1
$$

Question: What happens if we have a smooth extremal neighborhood?

Smooth extremal neighborhoods:
Prop: Let $X \geq C \simeq \mathbb{P}^{\prime}$ be an extromal neighborhood.
Then $\theta_{c}\left(k_{x}\right) \simeq \theta_{c}(-1), \quad I_{c} / I_{c}^{2}=\theta_{c} \oplus \theta_{c}(1)$ and $\left|-k_{x}\right|$ has a smooth member.
(I_{c} is the ideal sheaf of C on X).
Proof: $K_{x} \cdot C=-1$, from $K_{x}, C<0$ and $\left.H^{\prime}\left(O_{c} C_{k}\right)\right)=0$.

$$
0 \rightarrow \mathcal{L}_{c} \mathcal{L}_{c}^{2} \rightarrow \Omega_{x}^{\prime} \otimes \theta_{c} \rightarrow \theta\left(K_{c}\right) \rightarrow 0
$$

we deduce that there is an isomorphism

$$
\Lambda^{2}\left(I_{c} \mathcal{L}_{c}^{2}\right) \xrightarrow{\sim} O\left(K_{x}\right) \otimes O_{c}\left(-K_{c}\right)
$$

Taring tore, we conclude

$$
\begin{gathered}
\operatorname{deg}\left(I_{c} / \mathcal{L}_{c}^{2}\right)=\left(K_{x} \cdot C\right)-\operatorname{deg} K_{c}=1 . \\
\left.0 \rightarrow I_{c} / I_{c}^{2} \otimes \theta_{c} C-1\right) \rightarrow \theta_{x}\left(I_{c}^{2} \otimes \theta_{x}\left(K_{x}\right) \rightarrow \theta_{c} C-1\right) \rightarrow 0 . \\
H^{+}\left(I_{c} / I_{c}^{2} \otimes \theta_{c}(-1)\right)=0 \quad \text { Hence, } \\
\mathcal{I}\left(\mathcal{L}_{c}^{2} \otimes \theta_{c}(1) \simeq O_{c} \oplus \theta_{c}(-1) .\right.
\end{gathered}
$$

$x \in C, C D(x)$ smooth div on the germ $(X, x), D$ extents naturally to a divisor D^{\prime} of X.

$$
D^{\prime} \in\left|-K_{x}\right| ?
$$

$C \omega \in W$

Pic $X \simeq \mathbb{Z}_{0}$ and the isomorphism is intured by

$D^{\prime} \sim-k x$.

Corollary: In the above case, X is the blow-up of a smooth 3-fold (W, w) along a smooth carve Co pussy through w.

Corollary, Let $X \xrightarrow{f} W$ be a terminal 3-fold flipping contraction. For every $\omega \in W, f^{-1}(\omega)$ contains a singularity.

$\overbrace{c} c=\mathbb{P}^{\prime}$

- $\omega \in W$

Classified terminal 3-fold si.
1.- There are at most 3 singular points.
2. - There is some nice divisor D posy through some of those sig point.

Theorem (Mori, ss): Let $X \geq C=\mathbb{P}^{\prime}$ be an extrema nod.
Then one of the following on the linear systems $\left|-a K_{x}\right|$ ($a=1$ or 2) holds:
i) $\left|-k_{x}\right|$ has a member D with Du Val sing, or
ii) $\left|-2 k_{x}\right|$ hes a member D so that the double over Z of X branched locus D hos only $D u V_{2}$ sing-

D being $D_{U} V_{2} \Longrightarrow$ (X, D) is purely \log terminal.

The finite generation of

$$
\theta_{n \geq 0} f * \theta_{x}(n k x)
$$

The finite generation of

$$
\left.\bigoplus_{n \geqslant 0} f\right|_{D}\left(O_{D}\left(n K_{x}\right)\right.
$$

The latter is a problem about projective surface.

$$
\tau
$$

This concludes the existence of flips for terminal 3 -folds
Term 3-fold.

$$
X \longrightarrow X_{1} \longrightarrow X_{2} \cdots X_{3} \ldots \rightarrow
$$

Theorem: An arbitrary sequence of 3 -drum extremal canonical $(k x+\Delta)-f$ lips is finite

Lemma: Let $\phi: X \rightarrow X^{\prime}$ be a $\left(K_{x}+\Delta\right)$-flip of a 3-dim canonical parr $\left(X, \Delta=\sum_{i=1}^{k} a_{1} D_{i}\right)$.
Let $C^{\prime} \subseteq X^{\prime}$ be a flipped curve, and $E_{c^{\prime}}$ be the exceptional divisor obtained by blowing up C !
Then X^{\prime} is smooth along C^{\prime} and generic point

$$
0 \leqslant a\left(E_{c^{\prime}}, X, \Delta\right)<a\left(E_{c^{\prime}}, X^{\prime}, \Delta^{\prime}\right)=1-\sum, a_{i} m_{u} l c_{c^{\prime}}\left(D_{i}^{\prime}\right)
$$ where mut a $\left(D^{\prime}\right)$ is the multipherity of D^{\prime} ahoy $c^{\text {: }}$

Proof: Since C^{\prime} is a flipped curve, then X^{\prime} is smooth along the generic pt of c^{\prime}. Indeed X^{\prime} is terminal along $\eta_{c^{\prime}}$, so smooth
If there is a non-terminal v_{2} with center on C^{\prime}, then there is 2 non-cinoniczl $\left|v_{2}\right|$ on (x, Δ).

Difficulty function: $\left(X, \Delta=\sum_{i}^{\prime} D_{i}\right)$ canonical pair with D_{i} parravise diff prime fivison $a=\max \left\{a_{i}\right\}$. $S:=\sum_{i}^{\prime} a_{i} \mathbb{Z}_{i \geq 0} \subseteq \mathbb{Q}$. We set

$$
f(X, \Delta)=\sum_{\substack{x \in s \\
x<\alpha}}^{1} \#\left\{\begin{array}{c}
\text { Exceptional divisor n over } X \\
\text { with } a(E, X, \Delta)<1-x
\end{array}\right\} .
$$

Ex: cAr singularities., $d\left(c A_{r}\right)=r$.
R_{m} : The diff function is mezrung \# of non-term val $d(x, \Delta)<\infty$ and $f(x, \Delta)$ does not increase after a flip.

Termination of canonical 3 -fold flips:
Proof: $\quad \Delta=\sum_{i=1}^{k} a_{i} D_{i}, \quad a_{1} \leq \ldots \leq a_{k}$

$$
(x, \Delta) \stackrel{\phi^{2}}{-}\left(x^{1}, \Delta^{1}\right) \xrightarrow{\phi^{2}}\left(x^{2}, \Delta^{2}\right) \phi_{\cdots}^{3} \ldots
$$

If $k=0$, then $\delta\left(x^{j-1}, 0\right)>\delta\left(x^{j}, 0\right)$.

$$
a\left(E, X^{J}, 0\right)=1
$$

Hence, after finitely flips $f\left(X^{2}, 0\right)=0$ and then there is no more flips.

Assume k>0. $f\left(X^{j}, \Delta^{j}\right)$ is non-tecressy. C^{j} flipped curve for ϕ^{j-1} assume is contained in D_{k}^{j} then $a_{k<1}$ and $f\left(x^{j-1}, \Delta^{j-1}\right)>\delta\left(X^{j}, \Delta^{j}\right)$.
Thus for $j \gg 0, D_{k}^{j}$ contains no flipped cures,

Denote by \bar{D}_{k}^{j} the normalization of D_{k}^{j}.
$\bar{D}_{k}^{j-1} \longrightarrow \bar{D}_{k}^{j}$ is a birational morphism.

The exc corves of $\bar{D}_{k}^{j} \rightarrow \bar{D}_{k}^{\ell}$ for $l>k$ are 1 . At some point we hive $\bar{D}_{k}^{j} \simeq \bar{D}_{k}^{l}$ for $l \gg j$. This means that both the flippy and flipped corves are tisjant from D_{k}^{j}.

$$
\begin{gathered}
C \cdot D_{k}^{j}=0 \\
\left(X, \Delta=\sum_{i=1}^{k} a_{i} D_{i}\right) f \mid p_{i} \\
\left(X, \Delta^{\prime}=\sum_{i=1}^{k-1} a_{i} D_{i}\right) \mathbb{f l}^{\prime} \mid p_{1}
\end{gathered}
$$

By induction on k, there flips stop

Abundance: If X is $k l t+K_{x}$ nef $\Longrightarrow K_{x}$ semiumple.
This is proved for terminal 3-folds by Kawamata.

These three resulbs settler down the MMP for terminal 3-fold,

Existence of flips 1998 Mor:

1988 Mon Kollá - Shoscurov.

Abundznce
Kawumb 90's.

Existence of
flips:
2000's Kollen-shokurvo.
foom (x, Δ) anonial to (x, Δ) I. 3-fold.

Termination of flips:

2004: Alexeev- H_{200} - $\mathrm{K}_{\text {wwmin }}$ term of flips for $(x, \Delta) 4$-fols. $-(k x+\Delta) \mathrm{cff}$.

2005: H_{200} \& Mckermen: flips exists in $d_{m} n$ provited the MMP wovies in dim $n-1$

2006: BCHM term of flipi
2006: BCHM exiltence of flips (x, Δ) klt.

2010: HX -Bir: existence of flips (x, Δ) lc.

(x, Δ) klt $k x+\Delta$ big.

2018: Term of flips for (x, Δ) k 4-fold with $k_{x}+\Delta$ preff
$\left.\begin{array}{ll}(x, \Delta) & \text { klt } 4 \text {-fold uninled } \\ (x, \Delta) \quad \operatorname{dim} \geqslant 5 .\end{array}\right\}$ unknown

Applications to singularities:
Conjecturally, the MMP contract / flips the lows

$$
B_{s}\left(k_{x}\right)=B_{s}\left(k_{x}\right)
$$

This is known in $d_{m} 3$ and it follows from termination +26 ondznce
Recall: $D \subseteq X$, A ample divisor on X.

$$
B_{5-}(D)=\bigcup_{\varepsilon>0} B_{s}(D+\varepsilon A) \subseteq B_{s}(D)
$$

Countable union of alg varicher.
Leis... showed the existence of a finwor on certain blow-op of $\mathbb{P}^{P^{3}}$ whose B_{s} - is a countable union of curie.

Terminalization. Let (X, Δ) be a kit pair of dim 3 .
Then there exists a projective biratioml morphism $Y \rightarrow X$ so that Y is terminal and extracts exactly the fiwiours with $a_{E}(x, \Delta) \in(-1,0)$.

Proof, $(z, \Delta z)$
$\varphi \downarrow$

Δ_{z}^{\prime} is Δ_{z} after we increase all neg coif to 0 .

Proof.

Δ_{z}^{\prime} is Δ_{z} after we increase all neg conf to 0 .

$$
B_{s-}\left(k_{z}+\Delta_{z}^{\prime}\right) \supseteq
$$

All divisors with

$$
a_{E}(x, \Delta)>0 .
$$

R the MMP for $K_{z}+\Delta_{z}^{\prime}$. we contrut $2 l l$ these divisors
$\left(Z, \Delta_{z}^{\prime}\right)$ terminal \Longrightarrow when you run the MMP it remand terminal.

Abundance: Le pairs (x, Δ) tim $3 \mathbb{N}$ k pairs (x, Δ) dim 4 with X uninuled
Ic pair $(X, \Delta) \operatorname{dim} 4$ with ??

$$
k_{x}+\Delta \text { preft }
$$

Small Q-factorializatron: Let (X, Δ) be a kit pair. of $\operatorname{dim} 3$.
Then there exists a projective biratioml morphism $\gamma \xrightarrow{\pi} X$ so that π is a small morphism (does not extract divisors). and Y is Q-factorial. In particular, $K_{Y}+\Delta Y=\pi^{*}\left(K_{x}+\Delta\right)$ defines a kit parr $(Y, \Delta r)$ and Y is $k I t$.

Sketch: $(Z, \Delta z)$ a \log resolution of (x, Δ)

$$
e^{*}\left(K_{x}+\Delta\right)=K z+\Delta_{z}
$$

$$
(X, \Delta)
$$

Δz may have negative coefficients, $(Z, \Delta z)$ is a sub-klt pair.
Let $\varepsilon>0$ so that all coefficients of Δz are less thin 1-E.
This ε exists by the kilt-ness assumption
Let $\Delta '^{\prime}$ be the divisor obtained from Δ_{z}. by increasing $2 l l$ the coff of exc divisors over X to $1-\varepsilon$

Then, by the negativity lemma, we obtain i

$$
\operatorname{supp}(E x(Z / X)) \subseteq B_{s-}\left(K_{z}+\Delta_{z}^{\prime} / X\right)
$$

i.e., the diminished bare locus of $K_{z}+\Delta_{z}^{\prime}$ over X contains the exceptional locus of $Z \longrightarrow X$, which we may assume purely fivisorial.

Hence, when ron the MMP for $K z+\Delta_{z}^{\prime}$ relative over X :

(*)
All the drisors of $E_{x}(Z \mid X)$ are contracted. The MMP termites because we are working in dimension 3 . We call $K_{z_{k}}+\Delta z_{z_{k}}$ the last model of this MMP. Since $k z+\Delta_{z}^{\prime}$ is big over X, then $K_{z_{k}}+\Delta_{z_{k}}^{\prime}$ is big and nef over X.
Furthermore, Z_{k} is Q-factorial, since $Z_{\text {is }} Q$-fact and the MMP preserves Q-factoriality.
By ($*$) the morphism φ_{k} is small. Hence $\varphi_{k}{ }^{*}\left(K_{x}+\Delta\right)=K_{z_{k}}+\Delta^{\prime} z_{k}$. We can set $Y=Z_{k}$ and conclude the proof.

Dit modification: Let (X, Δ) be a \log canonical pain')
There exists a projective birational morphism $\pi: Y \longrightarrow X$ so that it only extract divisors E so that $a_{E}(X, \Delta)=0$ and $K_{Y}+\Delta_{Y}=\pi^{*}\left(K_{X}+\Delta\right)$ defines a dit pair $\left(Y, \Delta_{r}\right)$

Sketch: Let $(Z, \Delta z)$ be a log resolution of

$$
\begin{aligned}
& \downarrow \varphi \\
& (x, \Delta)
\end{aligned}
$$

We define Δ_{z}^{\prime} to be the divisor obtained from Δz by increasing to 1 all coefficients from the prime components of Δ_{z} which are exceptional over X and have coff <1.
By the negatrity Lemma, we have:

$$
\bigcup_{\substack{E x c \text { over } x \\ a_{E}(x, \Delta)>0}} \operatorname{supp}(E) \subseteq B_{5}-\left(k_{z}+\Delta_{z}^{\prime} / X\right) .
$$

By the \log smoothness, $\left(Z, \Delta_{z}^{\prime}\right)$ is $d l t$.

We run 2 MMP for $K z+\Delta \Delta_{z}^{\prime}$ over X.
We call $\left(z_{k}, \Delta z_{k}\right)$ the last model of this minimal model program.
It contracts all the divisors on Z which are exceptional over X and satisfy $Q_{E}(X, \Delta) \geq 0$.
Hence, $Z_{k}^{R} X$ only extract divisors with $a_{E}\left(Z_{k}, \Delta_{Z_{k}}^{\prime}\right)=0$.

Since the MMP preserves the dIt property, then we have that $\left(Z_{k}, \Delta_{z_{s}}^{\prime}\right)$ is dlt .

Hence, it suffices to tare $Y=Z_{k}$.
The following is a corolling of existence of small Q-fact.
Corollary: A kIt surface sing is Q-factorril.
Proof: A small Q-fact is in this case

Remark:

- The existence of small Q-fact in dimension n follows from the existence and termination of flip for kIt parrs (x, Δ) with $k_{x}+\Delta$ big over the base in dimension n.
- The existence of terminalizations in dimension n follows from the existence and termination of flip for kit parrs (x, Δ) with $k_{x}+\Delta$ big over the base in dimension n.
- The existence of dIt modification in dimension n follows from the existence and termination of flipr for dlt parrs (x, Δ) with $k_{x}+\Delta$ big over the base in dimension n.

However, in a paper by Kollir and Kovacs, there is a proof (tue bo $H_{z a n}$) only vina MMP for kit pain.

Tonic sirgoularites:
Tonic geometry is the side of algebras geometry that comes from combinatorics. The equation defining tonic varieties and toric sirpularities are binomial equations and there binomial equations are encrypted by certain convex bodies.

Let N be a free finitely generated abehian group and $M=\operatorname{Hom}\left(N, \mathbb{Z}_{i}\right)$ its dual.

Na and Ma the associated Q-vector spier
Let $\sigma \subseteq \mathbb{N Q}_{Q}$ be a stnetly convex polyhedral cone strictly convex means this it foern't contun linear subs.

convex polyhedral. not strictly convex

strictly convex poly hedral cone.

Given $\sigma \subseteq N_{Q}$ strictly convex polyhedral cone.

$$
\sigma^{6}=\left\{u \in M_{a} \mid\langle u, v\rangle \geq 0 \text { for } 2 \| v \in \sigma\right\} \text {. }
$$

σ^{2} is also a stirctly convex polyhedral cone
$\mathbb{I I}\left[\sigma^{v} \cap M\right]$ is the correppondry ring associated to the semigroup $\sigma^{\prime} \cap M$
We define $X(\sigma):=\operatorname{Spec}\left(\mathbb{K}\left[\sigma^{*} \cap M\right]\right)$.
Example:

$$
\begin{aligned}
& \sigma=\operatorname{span}\{(-n, 1),(n, 1)\} \subseteq \mathbb{Q}^{2} \\
& \sigma^{x}=\operatorname{span}\{(1, n),(-1, n)\} \subseteq \mathbb{Q}^{2}
\end{aligned}
$$

The semproup $\sigma^{6} \cap M$ is generated by $(1, n),(-1, n)$ and $(0,1)$

n	11	$\prime 1$
x	y	z

with the relation $(1, n)+(-1, n)=2 n(0,1)$
Hence, $X(\sigma) \simeq \operatorname{II}[x, y, z] /\left(x y-z^{2 n}\right)$.

Tonic geometry:
The M-grading on $\mathbb{I}\left[\left[\sigma^{*} \cap M\right]\right.$ inducer a
$S_{\text {pec }}(\mathbb{K}[M])=\mathbb{C}_{m}^{\operatorname{dima}}(\mathrm{Ma})$-action on $X(\sigma)$
Let's set $n=\operatorname{dim}(X(\sigma))=\operatorname{dima}\left(M_{a}\right)$
$X(\sigma)$ can be decomposed in \mathbb{G}_{m}^{n}-orbits,
so that a \mathbb{U}_{m}^{n-l}-orbit corresponds to
a ℓ-dimensional face of σ.
Example: σ as in previous example.

$$
\mathbb{T} \mathbb{1}[x, y, z] /\left\langle x y-z^{2 n}\right\rangle
$$

If $z=0$, we obtain
$\operatorname{spec} \mathbb{I}[x, y] /\langle x, y\rangle=$

Gm correspond to one ry eft

Tim correppaty to the other ry

If $z \neq 0$, then $x \neq 0, y \neq 0$
and $\left(t_{1}, t_{2}\right) \longmapsto\left(t_{1}, t_{1}^{-1} t_{2}^{2 n}, t_{2}\right)$.
gives $2 n$ iso of \mathbb{C}_{m}^{2} with this chart

Q-factorial and smooth toric points:
The affine tonic variety $X(\sigma)$ is smooth iff σ is a regular cone of $M a$, ie., its extrema rays span M. (over \mathbb{Z}_{1})
If σ is regulz, then $X(\sigma) \simeq \mathbb{G}^{n}$.
The affine topic variety $X(\sigma)$ is Q-factorial it t σ is simplicial. in M_{Q}, ie, its extiemal rays spin $M a$ Cover Q).
If σ is simplicial, then $X(\sigma) \simeq \mathbb{C}^{n} / A$, where A is a finite abalian group actin moromilly on \mathbb{C}^{n}.

Example: $\quad \sigma=\operatorname{span}\{(-n, 1),(n, 1)\} \subseteq Q^{2}$ defines $X(\sigma)$ which is $\simeq \mathbb{W}^{2} / \mu_{\text {in }} \longrightarrow 2 n$ root of uni ty.
Let $\sigma=\operatorname{span}\{(1,0,0),(0,1,0),(0,0,1),(1,-1,1)\} \subseteq \mathbb{Q}^{3}$.
Then $X(\sigma)$ is 150 orphic to a cone over $\mathbb{P}^{\prime} \times \mathbb{P}^{\prime}$
Thus, is not Q-factorial (its local cess group continue 2 copy of \mathbb{Z})

Small Q-fact of topic singularity:
A small Q-factorialization of a boric sang corresponds to a simplicializition of σ (cone refinement).
That does not introduce new rays.
Example:

$$
\sigma=\operatorname{span}\{(1,0,0),(0,1,0),(0,0,1),(1,-1,1)\} \subseteq \mathbb{Q}^{3}
$$

this corresponds to
a blow-up extractry 2 copy of " ${ }^{\circ}$

this corresponds to a blow-up extracting a copy of $\mathbb{1 P}^{\circ}$
this small mop

This is the blow-up of the maximal ideal at the vertex is a (not-smill) Q-factorialization.

